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Abstract

Demands on the performance of vehicle control and diagnostic sys-
tems arc steadily increasing as a consequence of stiff global compe-
tition and government mandates. Neural networks provide a means
of creating control and diagnostic strategies that will help in mect-
ing these demands efficiently and robustly. This paper describes
a VLSI design that permits such networks to be executed in real
time as well as the application, misfire detection, that served as a
focus for the collaborative effort.

1 Introduction

The control system of a modern automobile involves several interacting subsystems,
almost any onc of which provides interesting theoretical and enginecring challenges.
Further, increasingly stringent emissions regulations require that any malfunction-
ing component or system with the potential to undermine the emissions control
system be detected and identified. Neural networks have the potential for major
impact in this work. Benefits may be anticipated in design time or performance of a
control (Puskorius and Feldkamp, 1996) or diagnostic st rategy (Marko et al., 1996).
Wc have shown that both of these applications arc suited to the use of recurrent
rnu]ti-layer perceptrons, the architecture of which may be regarded as the joint gen-
eralization of a feedforward multi-layer perceptron and a o~Ic-layer fully time-lagged
recurrent network. A potential barrier to the usc of such networks, however, arises
from the considerable burden from other functions alrcady carried by existing pow-
ertrain processors. This prompted an effort to develop a VLSIdesign that would



facilitate the implementation of recurrent networks in high-volume products.

2 Neuroprocessor Chip

The design constraints for this project called for the development of an incxpen-
sive, fully autonomous, and commercially viable electronic chip. This single chip
implement ation was required to be (1) extremel y compact in size (mass market po-
tential) (2) flexible (several neural basecd applications would share the hardware and
sequentially execute on it), and (3) accurate (no miscalls due to limited hardware
resolution). Observing that combustion events occur, even at maximum engine
speed, on a millisccond time scale, a novel and extremcly compact and powerful
layer-multiplexed bit-serial necuromorphic architecture was developed and exploited
for the VLSI CMOS implementation.

2.1 Architect ure

The required computations can be summarized as a series of parallel multiply and
accumulate (MAC) operations intcrspcrscd by an occasional nonlinear operation.
Wc exploited five basic stategics to achieve our desired goals: (1) parallel intra-
layer topology; (2) single-instruction-multipk-data (SIMD) architecture; (3) bit-
scrial fixed-point computational techniques; (4) inter-layer multiplexing of neuron
resources; and (5) nonlincarities handled by look-up-tables.

The resulting architecture is shown schematically in Figure 1 and consists of (1)
a global controller; (2) a pool of 16 bit-serial ncurons; (3) a ROM based bipolar
sigmoid activation look-up-table; (4) neuron state registers, and (5) a synaptic
weight RAM. In this design, both inputs to the network as well as neuron outputs
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Figure 1: Schematic representation of forward propagation module.

arc stored in the neuron state RAM. When triggered by the global controller, each
of the 16 neurons performs the multiply and accumulate (M AC) operation. They
receive in a bit serial fashion as input the synaptic weights (from the synaptic
weight RAM) and activations from either (a) input nodes or (b) outputs from other
neurons and output the accumulated sum of partial products onto a tri-stated bus
which is commonly shared by all 16 neurons. Because of the computat io1,a] nature
of neural networks where information is sequentially computed a layer at a time

only enough neurons arc physically implemented in silicon as exist on the layer
with the largest number of neurons for all applications of interest. Assuch, a
candidate pool of 16 silicon neurons was chosen. This iutra-layer pool of neurons
is organized in a SIMD configuration. Single-instruction (S1) means that all active
neurons in the pool execute thesame instruction at the same time. Multiple-data



(MD) means that each active neuron acts on its own slice of data, independently of
all other processors. Thus the chip performs fully parallel computations under the
supervision of the global controller.

A significant reduction in silicon real-estate was achicved by performing inter-layer
multiplexing of the 16 neuron pool, i.e., the hardware used in calculating the activa-
tions of neurons in onc layer is reused for the calculation of neurons in another layer,
since neurocomputations arc performed a layer at a time. We also used bit-serial
algorithms extensively for arithmetic operations because their canonical nature and
minimal interconnection requirements make thcm particularly suitable for efficient
VLSI implementation.

2.2 Controller

At the heart of the ncuroprocessor architecture is the global controller. The con-
troller contains the logic to enable the ncurochip to execute its task. This task is to
load an architecture from RAM, and once triggered, to gencrate all neeessary con-
trol signals in addition to orchestrate data movement on-chip and off-chip. When
there arc no computations being pm-formed, the global controller remains in the idle
state, signaling its availability by having the active low BUSY flag set high. When
a LOAD command is issued, the controller reads from RAM a neural network topol-
ogy and goes into an idle state. When the RUN command is subsequently issued,
the global controller is in charge of providing control signals to the RAM, ROM, and
the 16 on-chip neurons, in order to procecd with the desired computation. Input
activations arc read out of the 64x16 Ncurou State R AM, synaptic weights are read
out of the 2K x 16 Synaptic Weight RAM, and both arc propagated to the bank of
16 neurons. In this way, the global controller keeps track of both intra-layer opera-
tions as well as inter-layer operations. Upon completion of a forward pass through
the network architecture, the global controller asserts the BUSY flag and returns
to the idle state.
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Figure 2: Run-time forward propagation controller.

2.3 Neurons

Fixed-point bit-serial algorithm for operations such as addition and mult iplication
arc uniquely suitable for efficient VI.SI implementations because of their highly
compact representations. For example, the size of an nn x nbit multiplier scales
quadratically (O(n?)) for a bit-parallel implementation and linearly (O(n)) for a
bit-serial one. ~lit-serial techniques were thercfore used. A schematic representation



of a bit-serial neuron is shown in Figure 3.
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Figure 3: llit-serial neuron.

Precision constraints for the misfire problem called for the usc of a 16 x 16 bit fixed-
point multiplier. In operation, the multiplier accepts as input either an input stim-
ulus to the neural network or an activation output from a neuron on a previous
layer. It multiplies this quantity by the corresponding synaptic weight. The in-
put stimulus (or activation output) is presented to the multiplier in a bit-parallel
fashion, while ‘the synaptic weights arc-presented in a bit-serial fashion The serial
output of the multiplier feeds directly into an accumulator.
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Figure 4: Hit-serial multiplier of length n

The multiplier shown in Figure 4 is a modified and improved version of a previousl y
reported serial multiplier. Any size multiplier can be formed by cascading the basic
multiplier cell. The bit-wise multiplication of the multiplier and multiplicand is
performed by the AND gates. At each clock cycle, the bank of ANI) gates compute
the partial product terms of the multiplier Y[15:0] and the serial multiplicand X (t).
Two's complement multiplication is achieved by using XOR gates on the outputs
of the AND gates. By controlling onc of the inputs of the XOR gate, the finite
state machine FSM can form the two's complement of sclected terms based on its
control ffow. In gencral, for an 7 x n multiplier (resulting in a 2n bit product), the
multiplier can be formed by using 2n basic cells and will perform the multiplication
in 2n + 2 clock cycles. Successive operations can be pipelined and the latency of
the L.SB of the product is n + 2 clock cycles.

The accumulator, shown in Figure 5, is also a bit-serial design. It is cxtremely
compact as it consists of a single bit-serial adder linked to a chain of data registers.
The length of the accumulator chain is governed by the multiplication length. The
multiplicr takes 2n + 2 clock cycles to perform a complete n x 7 multiplication. At
each clock cycle, the accumulator sums the bit from the input data stream with
both the current contents of the data register on the circular chain as well as any
carry bits that might have been generated from the addition in the previous clock



Figure 5: llit-serial accumulator of lengthn.

cycle. This value is subsequently stored onto the chain on the next clock cycle. This
creates a circulating chain of data bits inthe accumulator with period2rn.+4 2.

The neuroprocessor design was implemented using H P’s 0.5 jzin CMOS design rules.
The first generation chip mcasured8mm?iusize. The current design operates at
a conservative 20 MHz clock speed. A neural application) canbeloaded into the
hardware in under 1 ps. Because of the S1 MD architecture, it takes 1.6 psto
simultancousl y perform 16 multiply and accumulate operations. This translates
into an cffective computational throughput of 0.1 pus per MAC operation. The next
generation processor will operate at 50 MHvz.

3 The Misfire Diagnostic Problem

Because engine misfire can cause a significant, increase in tailpipe cmissions and can
damage the catalytic converter, it is a required diagnostic. Misfire detection must
be performed between engine cylinder firings, which can occur at rates as high as
30,000 events pcr minute, so that approximately one billion events must be classified
over the life of each vehicle. While there are many ways of detecting engine mis-
fire, all currently practical methods rely onobscrving engine crankshaft rotational
dynamics with a position sensor located at one end of the shaft,. Briefly stated, one
looks for a crankshaft acceleration deficit following a cylinder firing and attempts
to determine whether such a deficit is attributable to a lack of power provided on
the most recent firing stroke. The method is complicated by several factors: 1)
the crankshaft dynamics arc influenced by unregulated inputs from the driver and
disturbances introduced through the driveshaft from road irregularities; 2) the dy-
namics arc obscured by mcasurcement noisc;3) the crankshaft is not infinitely stiff
and exhibits complex dynamics which mask the signature of the misfire event and
which arc influenced by the event itself. In effect, wc arc observing the torsional
oscillations of a nonlincar oscillator with driving forces applied at several locations
along its maiu axis. While it is straightforward to write down dynamical equations
that approximate the crankshaft rotational dynamics as a function of the combus-
tion pressures applied to the piston faces, it is difficult, to solve those equations and
even more difficult to solvethe inverse inference problem associated with misfire
diagnostics. Nonctheless, it was the expect ation of a discoverable dynamic rela-
tionship between the observed accelerations and thedriving forces in this system,
coupled with theabsence of a satisfactory alternative approach, that motivated our
exploration of rccurrent networks as a solution to the problem.



